Package: gmp 0.7-5
gmp: Multiple Precision Arithmetic
Multiple Precision Arithmetic (big integers and rationals, prime number tests, matrix computation), "arithmetic without limitations" using the C library GMP (GNU Multiple Precision Arithmetic).
Authors:
gmp_0.7-5.tar.gz
gmp_0.7-5.zip(r-4.5)gmp_0.7-5.zip(r-4.4)gmp_0.7-5.zip(r-4.3)
gmp_0.7-5.tgz(r-4.4-x86_64)gmp_0.7-5.tgz(r-4.4-arm64)gmp_0.7-5.tgz(r-4.3-x86_64)gmp_0.7-5.tgz(r-4.3-arm64)
gmp_0.7-5.tar.gz(r-4.5-noble)gmp_0.7-5.tar.gz(r-4.4-noble)
gmp_0.7-5.tgz(r-4.4-emscripten)gmp_0.7-5.tgz(r-4.3-emscripten)
gmp.pdf |gmp.html✨
gmp/json (API)
# Install 'gmp' in R: |
install.packages('gmp', repos = c('https://antoinelucas64.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 months agofrom:1f7aac8e13. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win-x86_64 | OK | Nov 01 2024 |
R-4.5-linux-x86_64 | OK | Nov 01 2024 |
R-4.4-win-x86_64 | OK | Nov 01 2024 |
R-4.4-mac-x86_64 | OK | Nov 01 2024 |
R-4.4-mac-aarch64 | OK | Nov 01 2024 |
R-4.3-win-x86_64 | OK | Nov 01 2024 |
R-4.3-mac-x86_64 | OK | Nov 01 2024 |
R-4.3-mac-aarch64 | OK | Nov 01 2024 |
Exports:..as.bigz.as.bigz.as.char.bigz.sub.bigq%*%add.bigqadd.bigzapplyapply.bigqapply.bigzapply.defaultas.bigqas.bigzas.bigz.bigqas.vector.bigqas.vector.bigzasNumericBernoulliQbiginteger_asbiginteger_as_characterc_bigqc_bigzchooseZcrossproddbinomQdenominatordenominator<-div.bigqdiv.bigzdivq.bigzEulerianEulerian.allfactorialZfactorizefibnumfibnum2formatNfrexpZgcdgcd.bigzgcd.defaultgcdexgmpVersioninv.bigzis.bigqis.bigzis.matrixZQis.wholeisprimelcm.bigzlcm.defaultlog.bigzlog10.bigzlog2.bigzlucnumlucnum2matrixmatrix.bigqmatrix.bigzmatrix.defaultmax.bigqmax.bigzmin.bigqmin.bigzmod.bigzmodulusmodulus<-mul.bigqmul.bigzNA_bigq_NA_bigz_ncol.bigqncol.bigznextprimenrow.bigqnrow.bigznumeratornumerator<-outerpow.bigqpow.bigzpowmprod.bigqprod.bigzrep.bigqrep.bigzround0roundQsizeinbasesolve.bigqsolve.bigzStirling1Stirling1.allStirling2Stirling2.allsub.bigqsub.bigzsum.bigqsum.bigztcrossprodurand.bigzwhich.maxwhich.min
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Apply Functions Over Matrix Margins (Rows or Columns) | apply apply.bigq apply.bigz apply.default |
Coerce to 'numeric', not Loosing Dimensions | asNumeric asNumeric,ANY-method asNumeric,bigq-method asNumeric,bigz-method asNumeric-methods |
Exact Bernoulli Numbers | BernoulliQ |
Large sized rationals | as.bigq as.bigz.bigq as.character.bigq as.double.bigq bigq bigq-class c_bigq denominator denominator<- is.bigq is.na.bigq NA_bigq_ numerator numerator<- print.bigq |
Relational Operators | !=.bigq <.bigq <=.bigq ==.bigq >.bigq >=.bigq sign.bigq |
Basic arithmetic operators for large rationals | *.bigq +.bigq -.bigq /.bigq abs.bigq add.bigq div.bigq mul.bigq pow.bigq sub.bigq ^.bigq |
Large Sized Integer Values | as.bigz as.character.bigz as.double.bigz biginteger_as biginteger_as_character bigz bigz-class c_bigz is.bigz is.na.bigz NA_bigz_ print.bigz |
Basic Arithmetic Operators for Large Integers ("bigz") | %%.bigz %/%.bigz *.bigz +.bigz -.bigz /.bigz abs.bigz add.bigz div.bigz divq.bigz inv inv.bigz log.bigz log10.bigz log2.bigz mod.bigz mul.bigz pow pow.bigz sub.bigz ^.bigz |
Exact Rational Binomial Probabilities | dbinomQ |
(Cumulative) Sums, Products of Large Integers and Rationals | cumsum.bigq cumsum.bigz prod.bigq prod.bigz sum.bigq sum.bigz |
Extract or Replace Parts of a 'bigz' or 'bigq' Object | c.bigq c.bigz length.bigq length.bigz length<-.bigq length<-.bigz rep.bigq rep.bigz [.bigq [.bigz [<-.bigq [<-.bigz [[.bigq [[.bigz [[<-.bigq [[<-.bigz |
Extrema (Maxima and Minima) | max.bigq max.bigz min.bigq min.bigz which.max,bigq-method which.max,bigz-method which.min,bigq-method which.min,bigz-method |
Factorial and Binomial Coefficient as Big Integer | chooseZ factorialZ |
Factorize a number | factorize |
Format Numbers Keeping Classes Distinguishable | formatN formatN.bigq formatN.bigz formatN.default formatN.double formatN.integer |
Split Number into Fractional and Exponent of 2 Parts | frexp frexpZ |
Greatest Common Divisor (GCD) and Least Common Multiple (LCM) | gcd gcd.bigz gcd.default lcm.bigz lcm.default |
Compute Bezoult Coefficient | gcdex |
Base Functions in 'gmp'-ified Versions | outer |
GMP Number Utilities | gmpVersion |
Whole ("Integer") Numbers | is.whole is.whole.bigq is.whole.bigz is.whole.default |
Determine if number is (very probably) prime | isprime |
Compute Fibonacci and Lucas numbers | fibnum fibnum2 lucnum lucnum2 |
Matrix manipulation with gmp | %*% %*%.bigq %*%.bigz %*%.default as.matrix.bigq as.matrix.bigz as.vector.bigq as.vector.bigz cbind.bigq cbind.bigz crossprod crossprod.bigq crossprod.bigz crossprod.default dim.bigq dim.bigz dim<-.bigq dim<-.bigz is.matrixZQ matrix matrix.bigq matrix.bigz matrix.default ncol.bigq ncol.bigz nrow.bigq nrow.bigz rbind.bigq rbind.bigz t.bigq t.bigz tcrossprod tcrossprod.bigq tcrossprod.bigz tcrossprod.default |
Modulus of a Big Integer | modulus modulus.bigz modulus<- modulus<-.bigz |
Exported function for mpfr use | ..as.bigz .as.bigz .as.char.bigz .sub.bigq |
Next Prime Number | nextprime |
RFC 2409 Oakley Groups - Parameters for Diffie-Hellman Key Exchange | Oakley Oakley1 Oakley2 |
Exponentiation function | powm |
Generate a random number | urand.bigz |
Relational Operators | !=.bigz <.bigz <=.bigz ==.bigz >.bigz >=.bigz sign.bigz |
Rounding Big Rationals ("bigq") to Decimals | round.bigq round0 roundQ |
Compute size of a bigz in a base | sizeinbase |
Solve a system of equation | solve.bigq solve.bigz |
Eulerian and Stirling Numbers of First and Second Kind | Eulerian Eulerian.all Stirling1 Stirling1.all Stirling2 Stirling2.all |