Package: gmp 0.7-5

gmp: Multiple Precision Arithmetic

Multiple Precision Arithmetic (big integers and rationals, prime number tests, matrix computation), "arithmetic without limitations" using the C library GMP (GNU Multiple Precision Arithmetic).

Authors:Antoine Lucas [aut, cre], Immanuel Scholz [aut], Rainer Boehme [ctb], Sylvain Jasson [ctb], Martin Maechler [ctb]

gmp_0.7-5.tar.gz
gmp_0.7-5.zip(r-4.5)gmp_0.7-5.zip(r-4.4)gmp_0.7-5.zip(r-4.3)
gmp_0.7-5.tgz(r-4.4-x86_64)gmp_0.7-5.tgz(r-4.4-arm64)gmp_0.7-5.tgz(r-4.3-x86_64)gmp_0.7-5.tgz(r-4.3-arm64)
gmp_0.7-5.tar.gz(r-4.5-noble)gmp_0.7-5.tar.gz(r-4.4-noble)
gmp_0.7-5.tgz(r-4.4-emscripten)gmp_0.7-5.tgz(r-4.3-emscripten)
gmp.pdf |gmp.html
gmp/json (API)

# Install 'gmp' in R:
install.packages('gmp', repos = c('https://antoinelucas64.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • gmp– Multiprecision arithmetic library
  • c++– GNU Standard C++ Library v3
Datasets:
  • Oakley1 - RFC 2409 Oakley Groups - Parameters for Diffie-Hellman Key Exchange
  • Oakley2 - RFC 2409 Oakley Groups - Parameters for Diffie-Hellman Key Exchange

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

103 exports 8.75 score 0 dependencies 299 dependents 2 mentions 498 scripts 38.8k downloads

Last updated 22 days agofrom:1f7aac8e13. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKAug 24 2024
R-4.5-win-x86_64OKAug 24 2024
R-4.5-linux-x86_64OKAug 24 2024
R-4.4-win-x86_64OKAug 24 2024
R-4.4-mac-x86_64OKAug 24 2024
R-4.4-mac-aarch64OKAug 24 2024
R-4.3-win-x86_64OKAug 24 2024
R-4.3-mac-x86_64OKAug 24 2024
R-4.3-mac-aarch64OKAug 24 2024

Exports:..as.bigz.as.bigz.as.char.bigz.sub.bigq%*%add.bigqadd.bigzapplyapply.bigqapply.bigzapply.defaultas.bigqas.bigzas.bigz.bigqas.vector.bigqas.vector.bigzasNumericBernoulliQbiginteger_asbiginteger_as_characterc_bigqc_bigzchooseZcrossproddbinomQdenominatordenominator<-div.bigqdiv.bigzdivq.bigzEulerianEulerian.allfactorialZfactorizefibnumfibnum2formatNfrexpZgcdgcd.bigzgcd.defaultgcdexgmpVersioninv.bigzis.bigqis.bigzis.matrixZQis.wholeisprimelcm.bigzlcm.defaultlog.bigzlog10.bigzlog2.bigzlucnumlucnum2matrixmatrix.bigqmatrix.bigzmatrix.defaultmax.bigqmax.bigzmin.bigqmin.bigzmod.bigzmodulusmodulus<-mul.bigqmul.bigzNA_bigq_NA_bigz_ncol.bigqncol.bigznextprimenrow.bigqnrow.bigznumeratornumerator<-outerpow.bigqpow.bigzpowmprod.bigqprod.bigzrep.bigqrep.bigzround0roundQsizeinbasesolve.bigqsolve.bigzStirling1Stirling1.allStirling2Stirling2.allsub.bigqsub.bigzsum.bigqsum.bigztcrossprodurand.bigzwhich.maxwhich.min

Dependencies:

Readme and manuals

Help Manual

Help pageTopics
Apply Functions Over Matrix Margins (Rows or Columns)apply apply.bigq apply.bigz apply.default
Coerce to 'numeric', not Loosing DimensionsasNumeric asNumeric,ANY-method asNumeric,bigq-method asNumeric,bigz-method asNumeric-methods
Exact Bernoulli NumbersBernoulliQ
Large sized rationalsas.bigq as.bigz.bigq as.character.bigq as.double.bigq bigq bigq-class c_bigq denominator denominator<- is.bigq is.na.bigq NA_bigq_ numerator numerator<- print.bigq
Relational Operators!=.bigq <.bigq <=.bigq ==.bigq >.bigq >=.bigq sign.bigq
Basic arithmetic operators for large rationals*.bigq +.bigq -.bigq /.bigq abs.bigq add.bigq div.bigq mul.bigq pow.bigq sub.bigq ^.bigq
Large Sized Integer Valuesas.bigz as.character.bigz as.double.bigz biginteger_as biginteger_as_character bigz bigz-class c_bigz is.bigz is.na.bigz NA_bigz_ print.bigz
Basic Arithmetic Operators for Large Integers ("bigz")%%.bigz %/%.bigz *.bigz +.bigz -.bigz /.bigz abs.bigz add.bigz div.bigz divq.bigz inv inv.bigz log.bigz log10.bigz log2.bigz mod.bigz mul.bigz pow pow.bigz sub.bigz ^.bigz
Exact Rational Binomial ProbabilitiesdbinomQ
(Cumulative) Sums, Products of Large Integers and Rationalscumsum.bigq cumsum.bigz prod.bigq prod.bigz sum.bigq sum.bigz
Extract or Replace Parts of a 'bigz' or 'bigq' Objectc.bigq c.bigz length.bigq length.bigz length<-.bigq length<-.bigz rep.bigq rep.bigz [.bigq [.bigz [<-.bigq [<-.bigz [[.bigq [[.bigz [[<-.bigq [[<-.bigz
Extrema (Maxima and Minima)max.bigq max.bigz min.bigq min.bigz which.max,bigq-method which.max,bigz-method which.min,bigq-method which.min,bigz-method
Factorial and Binomial Coefficient as Big IntegerchooseZ factorialZ
Factorize a numberfactorize
Format Numbers Keeping Classes DistinguishableformatN formatN.bigq formatN.bigz formatN.default formatN.double formatN.integer
Split Number into Fractional and Exponent of 2 Partsfrexp frexpZ
Greatest Common Divisor (GCD) and Least Common Multiple (LCM)gcd gcd.bigz gcd.default lcm.bigz lcm.default
Compute Bezoult Coefficientgcdex
Base Functions in 'gmp'-ified Versionsouter
GMP Number UtilitiesgmpVersion
Whole ("Integer") Numbersis.whole is.whole.bigq is.whole.bigz is.whole.default
Determine if number is (very probably) primeisprime
Compute Fibonacci and Lucas numbersfibnum fibnum2 lucnum lucnum2
Matrix manipulation with gmp%*% %*%.bigq %*%.bigz %*%.default as.matrix.bigq as.matrix.bigz as.vector.bigq as.vector.bigz cbind.bigq cbind.bigz crossprod crossprod.bigq crossprod.bigz crossprod.default dim.bigq dim.bigz dim<-.bigq dim<-.bigz is.matrixZQ matrix matrix.bigq matrix.bigz matrix.default ncol.bigq ncol.bigz nrow.bigq nrow.bigz rbind.bigq rbind.bigz t.bigq t.bigz tcrossprod tcrossprod.bigq tcrossprod.bigz tcrossprod.default
Modulus of a Big Integermodulus modulus.bigz modulus<- modulus<-.bigz
Exported function for mpfr use..as.bigz .as.bigz .as.char.bigz .sub.bigq
Next Prime Numbernextprime
RFC 2409 Oakley Groups - Parameters for Diffie-Hellman Key ExchangeOakley Oakley1 Oakley2
Exponentiation functionpowm
Generate a random numberurand.bigz
Relational Operators!=.bigz <.bigz <=.bigz ==.bigz >.bigz >=.bigz sign.bigz
Rounding Big Rationals ("bigq") to Decimalsround.bigq round0 roundQ
Compute size of a bigz in a basesizeinbase
Solve a system of equationsolve.bigq solve.bigz
Eulerian and Stirling Numbers of First and Second KindEulerian Eulerian.all Stirling1 Stirling1.all Stirling2 Stirling2.all